_Ciência

Cientistas confirmam que ondas gravitacionais realmente existem

Pela primeira vez na história cientistas detectaram ondas gravitacionais, previstas por Einstein há um século.

Físicos estão à caça de ondas gravitacionais – pequenas vibrações no tecido do espaço-tempo – desde que Albert Einstein previu a existência delas há um século. Ondas gravitacionais existem, e finalmente foram encontradas por cientistas.

>>> Por que os cientistas estão tão ansiosos para encontrar ondas gravitacionais

É isso o que dizem pesquisadores do LIGO (Observatório de Ondas Gravitacionais por Interferômetro Laser), que vêm trabalhando há semanas para confirmar que a primeira detecção direta de uma onda gravitacional realmente aconteceu. Sinais falsos já foram detectados anteriormente, e mesmo que rumores circulem há cerca de um mês, a equipe do LIGO quis ter certeza absoluta da descoberta antes de fazer um anúncio oficial.

E esse anúncio finalmente aconteceu. As ondas gravitacionais foram observadas na manhã do dia 14 de setembro de 2015, pelos dois detectores LIGO, localizados em duas cidades a 3.000 km de distância nos EUA. A fonte? Um buraco negro supermassivo que colidiu há 1,3 bilhão de anos. Quando isso aconteceu, cerca de três vezes a massa do Sol foi convertida em energia em uma fração de segundo.

Descobrindo as ondas

Ondas gravitacionais são vibrações no universo causadas por algum tipo de evento cósmico energético, de explosão de estrelas a fusão de buracos negros supermassivos. Conforme elas se propagam através do espaço e do tempo, as ondas gravitacionais causam pequenos tremores nos átomos que compõem a matéria.

Einstein as previu na sua teoria geral de relatividade em 1916, e sua existência foi indiretamente demonstrada em 1980, mas foi só quando o detector LIGO foi ligado em 2002 que a caçada pelas ondulações no espaço-tempo ficou realmente séria.


Visualização de ondas gravitacionais. Crédito da imagem: Werner Benger / Wikimedia

A primeira geração do experimento LIGO, que durou oito anos, não foi sensível o bastante para detectar essas ondas. Isso é compreensível. Ondas gravitacionais são minúsculas: os tremores atômicos que passam pelo nosso mundo quando dois buracos negros colidem em uma galáxia distante são da ordem de um bilionésimo de um bilionésimo do diâmetro de um átomo.

O LIGO usa lasers de alta potência para medir mudanças pequenas na distância entre dois objetos posicionados a milhares de quilômetros de distância. Milhões de coisas podem atrapalhar essa busca, incluindo a vibração causada pela passagem de um trem, um terremoto na Terra, e a realidade inconveniente de que todos os objetos com temperatura acima do zero absoluto estão vibrando o tempo inteiro.

Após uma série de atualizações feitas entre 2010 e 2015, o LIGO voltou a funcionar no ano passado. Com lasers mais potentes e um sistema melhorado de isolamento das vibrações do solo, as possibilidades de detecção da primeira onda gravitacional nunca foram maiores. Alguns cientistas até previram que teríamos nossa primeira detecção positiva em 2016 – mas poucos imaginavam que isso aconteceria tão rápido.

Na verdade, as ondas gravitacionais foram detectadas quase que imediatamente pelo LIGO. A equipe então passou meses investigando exaustivamente potenciais distúrbios ambientais ou instrumentais para confirmar que o sinal era real. O estudo foi aceito para ser publicado pela Physical Review Letters.

Buracos negros

De acordo com a teoria da relatividade de Einstein, quando um buraco negro orbita em direção a outro, eles perdem energia lentamente, o que faz com que eles se aproximem gradualmente. Nos minutos finais dessa fusão, eles aumentam consideravelmente a velocidade, até que, finalmente, se movendo a mais ou menos metade da velocidade da luz, eles se unem, formando um buraco negro maior. Uma tremenda explosão de energia é liberada, propagando-se através do espaço como ondas gravitacionais.

Os dois buracos negros por trás de tudo possuem 29 e 36 vezes a massa do Sol, respectivamente. Os pesquisadores do LIGO estimam que, durante o pico da colisão cósmica, a energia liberada foi 50 vezes a de todo o universo visível.

“Essa observação foi maravilhosamente descrita na teoria geral da relatividade de Einstein formulada há 100 anos, e representa o primeiro teste da teoria em gravidade forte”, disse Rainer Weiss, o primeiro a propor o LIGO como forma de detecção de ondas gravitacionais nos anos 1980. “Seria fantástico ver o rosto de Einstein se pudéssemos contar isso a ele.”

Um novo capítulo na exploração do cosmos

A descoberta das ondas gravitacionais foi assunto de rumores nas últimas semanas. Cientistas ficaram empolgados e deixaram escapar a informação em diversas ocasiões. Na semana passada, o físico teórico Clifford Burgess, da Universidade McMaster (Canadá), enviou um email para todo o departamento dizendo que o LIGO encontrou um sinal real e “espetacular” da fusão de dois buracos negros.

Essa descoberta confirma um aspecto importante da teoria da relatividade, e vai muito além disso. Ele praticamente abre um novo capítulo na nossa exploração do cosmos, um em que a radiação eletromagnética não será nossa única ferramenta para “olhar” o universo. Como o astrofísico do MIT Scott Hughes disse ao Gizmodo, podemos usar ondas gravitacionais para sondar objetos celestiais misteriosos como buracos negros e estrelas de nêutrons, que normalmente não têm luz.

“Há muita informação rica codificada nas ondas gravitacionais,” ele explicou, notando que a forma da ondulação no espaço-tempo pode revelar o movimento e tamanho do objeto que a produziu. “Como astrônomo, tento pensar sobre como vamos do ‘som’ da forma de onda medida pelo LIGO, para os parâmetros que produzem a forma de onda.”

Hughes também destaca que, assim que nossos detectores forem sensíveis o suficiente para detectar ondas gravitacionais regularmente, poderemos começar a construir um censo dos eventos mais energéticos do universo. “Conseguir dados demográficos é uma das principais coisas a se fazer em uma era de detecção,” ele disse.

“Seja lá quando a primeira detecção acontecer, vai ter uma festa, sem dúvidas,” ele continuou. “Mas, depois disso, quando a detecção se tornar rotineira, é aí que as coisas vão ficar realmente interessantes.”

Uma caçada de mais de um século chegou ao fim. Mas uma nova exploração cósmica está apenas começando.

Sair da versão mobile